Relieving and Readjusting Pythagoras

نویسندگان

  • VICTOR LUO
  • STEVEN J. MILLER
چکیده

Bill James invented the Pythagorean expectation in the late 70’s to predict a baseball team’s winning percentage knowing just their runs scored and allowed. His original formula estimates a winning percentage of RS/(RS+RA), where RS stands for runs scored and RA for runs allowed; later versions found better agreement with data by replacing the exponent 2 with numbers near 1.83. Miller and his colleagues provided a theoretical justification by modeling runs scored and allowed by independent Weibull distributions. They showed that a single Weibull distribution did a very good job of describing runs scored and allowed, and led to a predicted won-loss percentage of (RSobs−1/2) /((RSobs−1/2) +(RAobs−1/2) ), where RSobs and RAobs are the observed runs scored and allowed and γ is the shape parameter of the Weibull (typically close to 1.8). We show a linear combination of Weibulls more accurately determines a team’s run production and increases the prediction accuracy of a team’s winning percentage by an average of about 25% (thus while the currently used variants of the original predictor are accurate to about four games a season, the new combination is accurate to about three). The new formula is more involved computationally; however, it can be easily computed on a laptop in a matter of minutes from publicly available season data. It performs as well (or slightly better) than the related Pythagorean formulas in use, and has the additional advantage of having a theoretical justification for its parameter values (and not just an optimization of parameters to minimize prediction error). CONTENTS

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Pythagoras number of real sum of squares polynomials and sum of square magnitudes of polynomials

In this paper, we conjecture a formula for the value of the Pythagoras number for real multivariate sum of squares polynomials as a function of the (total or coordinate) degree and the number of variables. The conjecture is based on the comparison between the number of parameters and the number of conditions for a corresponding low-rank representation. This is then numerically verified for a nu...

متن کامل

Bounds on the Pythagoras number of the sum of square magnitudes of complex polynomials

This paper presents lower and upper bounds on the Pythagoras number of sum of square magnitudes of complex polynomials using well-known results on a system of quadratic polynomial equations. Applying this method, a new proof for the upper bound of the Pythagoras number of real polynomials is also presented.

متن کامل

Nonextensive Pythagoras' Theorem

Kullback-Leibler relative-entropy, in cases involving distributions resulting from relative-entropy minimization, has a celebrated property reminiscent of squared Euclidean distance: it satisfies an analogue of the Pythagoras’ theorem. And hence, this property is referred to as Pythagoras’ theorem of relative-entropy minimization or triangle equality and plays a fundamental role in geometrical ...

متن کامل

On the Pythagoras numbers of real analytic set germs

We show that: (i) the Pythagoras number of a real analytic set germ is the supremum of the Pythagoras numbers of the curve germs it contains, and (ii) every real analytic curve germ is contained in a real analytic surface germ with the same Pythagoras number (or Pythagoras number 2 if the curve is Pythagorean). This gives new examples and counterexamples concerning sums of squares and positive ...

متن کامل

To string together six theorems of physics by Pythagoras theorem

In this paper, we point out that there are at lest six theorems in physics sharing common virtue of Pythagoras theorem, so that it is possible to string these theorems together with the Pythagoras theorem for physics teaching, the six theorems are Newton’s three laws of motion, universal gravitational force, Coulomb’s law, and the formula of relativistic dynamics . Knowing the internal relation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014